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Executive Summary 
The United States Department of Agriculture (USDA), Forest Service (FS), Forest Inventory and 
Analysis (FIA) is exploring the use of Light Detection and Ranging (LiDAR)) data derived geospatial 
products to enhance landscape assessments. As part of this initiative, the USDA Forest Service 
Field Services and Innovation Center Geospatial Office (FSIC-GO) investigated pathways for 
applying recently acquired national LiDAR data to support the tree canopy cover (TCC) national 
mapping efforts.  

Currently, for the Conterminous United States (CONUS), we use response data collected by FIA 
photo-interpreters using National Agriculture Imagery Program (NAIP) aerial imagery from 2009-
2011, along with spectral fitted and topographic predictors to produce CONUS TCC geospatial 
products through time. For this project, we investigated the potential of using LiDAR data, as 
response data for creating CONUS geospatial TCC products. Analysis ready LiDAR products were 
the outcome of a FS research collaboration with the University of Vermont’s Spatial Analysis Lab 
(SAL). They leverage the United States Geological Survey and the National Oceanic and 
Atmospheric Administration public LiDAR repositories. The analysis-ready LiDAR data, consists of 
166,977 chips, each covering approximately 1 km2. We used the first percentile returns (Pct1stRtns) 
to create TCC model training and model validation datasets. We cleaned these data for buildings 
and water, intersected them with various predictors, and used them to train machine learning 
models to predict TCC and standard error images. We compared these predicted images to those 
produced using models trained with FIA photo-interpreted TCC response data. The LiDAR response 
data models performed best when using seasonal predictors. The quality of the TCC and standard 
errors for these models outperformed the FIA PI response data models, except for hardwood 
dominated areas, which were affected by the leaf-off acquisition dates for the LiDAR data.  
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Introduction 
In 2011, the responsibility for generating tree canopy cover (TCC) data for the National Land Cover 
Database (NLCD) was assigned to the United States (US) Department of Agriculture (USDA), Forest 
Service (FS) (Homer et al., 2015). Initially, the NLCD TCC datasets were generated every ten years, 
with releases in 2001 and 2011, followed by five-year intervals in 2016 and 2021 (Homer et al., 
2015, 2004; Yang et al., 2018). Due to the escalating demand for more up-to-date information (Yang 
et al., 2018), we developed approaches to generate NLCD TCC datasets at shorter intervals 
ensuring timely and accurate information. Through advancements in technology and modeling 
techniques, we reduced costs, enhanced repeatability, increased rigor, and improved data quality 
(Housman et al., 2025). However, further improvement is still needed regarding the response data 
used to build the TCC predictive models. 

Currently, for the Conterminous United States (CONUS), we use response data collected by the 
USDA FS Forest Inventory and Analysis (FIA) – a special collection for the TCC project of photo-
interpreted plots using National Agriculture Imagery Program (NAIP) 2009-2011 – along with annual 
predictors to produce CONUS TCC geospatial products through time. For this project, we 
investigated the potential of using part of the analysis ready Light Detection and Ranging (LiDAR) 
data provided through a research collaboration between FIA and the University of Vermont’s Spatial 
Analysis Lab (SAL).  

LiDAR Data 
The analysis ready LiDAR data include raw LiDAR point clouds at native resolution, normalized point 
clouds at native resolution, and roughly 100 raster metrics at 10m2 resolution.  Data in the public 
National Oceanic and Atmospheric Administration (NOAA) and US Geological Survey (USGS) 3D 
Elevation Program (3DEP) repositories were clipped to approximately 1 km2 over all public plot 
locations of FIA National Forest Inventory (NFI, not including urban) plots, regardless of forest land 
status in CONUS and Alaska. The original LiDAR project acquisition was timed +/- 30 months of a 
FIA plot’s measurement year (MEASYEAR) in Western states and +/- 18 months of a plot’s 
MEASYEAR in Eastern states (Figure 1). The resultant data set consisted of 166,977 image chips, 
collected from 2005 to 2021, along with extensive quality description and quality control metrics. 
To allow for user specific tolerances and needs a comprehensive set of quality management 
metrics is part of the analysis ready LiDAR. SAL’s automated routine is available at 
https://gitlab.uvm.edu/SAL/lidar-dataprep.  The LiDAR chipping and processing criteria for the 
public LiDAR acquisitions results in the most comprehensive set of analysis ready LiDAR data over 
FIA NFI plots.   
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Given the “inclusive” chipping criteria, there is some amount of re-measured data through time, 
with the highest being four collects over a FIA latitude and longitude coordinate pair. Over 90 
custom and standard lidR package metrics (https://r-lidar.github.io/lidRbook/) were generated at 
10m spatial resolution. At the time of processing, Fusion software was not available for Linux-
based HPC processing (FUSION/LDV LiDAR Processing and Visualization Software, 2021). Each 
image chip was associated with 17 datasets containing LiDAR point clouds, various LiDAR metrics, 
and quality management information (Rounds et al., 2021).  

From these datasets and metrics, we used the percentage of 1st returns above 2 meters 
(Pct1stRtns) with a spatial resolution of 10 meters for the LiDAR response data for TCC models. This 
metric captured not only vegetation but also structures, illustrated in Figure 2. We used the LiDAR 
quality management information to remove incomplete chips (Figure 3), where the LiDAR 
acquisition didn’t fully overlap the chip centered on the public location of the FIA plot.  We 
discarded 826 incomplete image chips leaving a total of 165,470 “full” image chips. 

Figure 1.—Western (blue) and Eastern (red) states of the US that define the MEASYEAR for the LiDAR 
acquisitions. 

https://r-lidar.github.io/lidRbook/
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Figure 2.—Example of the LiDAR dataset (left) metric for 1st returns above 2m in height (Pct1stRtns) identifying structures 
on the landscape. The image on the right is NAIP 2011 imagery. 

 

LiDAR project data acquisitions can be of long duration; of the analysis ready LiDAR chips used, 
acquisition periods of 18 to 60 months and spanning various years were recorded.  With the data 
currently available in the original LiDAR project headers, exact acquisition dates for the area 
chipped is unknown.  While an average year of acquisition for each chip is available, the LiDAR data 
could have been collected during either leaf-on or leaf-off periods. This is problematic for response 

Figure 3.—Example of an analysis ready LiDAR chip not covering the full 1 km2 footprint. 
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data for TCC mapping that relies on growing season image predictors, as leaf-off data can lead to 
poor modeled relationships, as discussed in later sections.  An example of leaf-off LiDAR data is 
shown in Figure 4. In the area highlighted in red, the LiDAR derived TCC values will be in the 40-80 
percent range, while a photo interpreter would likely estimate TCC to be above 90 percent.  

 

Figure 4.—Left: Example of predicted TCC produced from machine learning models using LiDAR response data. Middle: 
Google Earth image showing the leaf-off conditions (January 2019). Right: 2010 NAIP image showing the area in growing 
season, which is similar to the imagery a FIA photo-interpreter used during the FIA TCC project data collect. Using the 
right image, a photo-interpreter would likely assign this area as greater than 90 percent TCC. However, the predicted TCC 
image on the left shows much lower TCC levels (40 – 80 percent) because of the leaf-off LiDAR data acquisition. 

Study Area 
We created a tiling system for CONUS, which is used for mapping TCC (Housman et al., 2023). We 
selected five tiles (7, 14, 19, 24, 38) to map TCC using LiDAR and FIA data combined with different 
predictor datasets (Figure 5). These tiles were chosen for their collective ecological diversity. Tile 7 
presents challenges due to the small trees typical of chaparral and low-density forests. Tile 14 
represents the arid Southwest. Tile 19 represents the hardwoods of the southern US. Tile 24 was 
selected to examine seamline effects between adjacent tiles. Tile 38 was chosen to represent 
northern hardwood and agricultural areas.  
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Figure 5.—TCC mapping tiles chosen for this project. 

 

Methods 
The following outlines the processing steps we used to create TCC maps from LiDAR data. Further 
details are provided below. All of the scripts mentioned below are in the FS GitHub: 
code.fs.usda.gov/forest-
service/TCC_NLCD_USFS/tree/main/lidar_investigation/LiDAR_Natl_Inventory 

For each image chip, 

1. Reproject to WGS 84 Albers. 
2. Snap to the NLCD national grid 
3. Mask buildings  
4. Mask water 
5. Calculate average TCC values and combine with spectral data 
6. Create model training and validation datasets 
7. Develop and apply random forest models 

 

https://code.fs.usda.gov/forest-service/TCC_NLCD_USFS/tree/main/lidar_investigation/LiDAR_Natl_Inventory
https://code.fs.usda.gov/forest-service/TCC_NLCD_USFS/tree/main/lidar_investigation/LiDAR_Natl_Inventory
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Step 1: Reproject 
The GDAL reproject function was used to reproject the image chips to Albers WGS84, which is the 
projection for NLCD CONUS products. Since the reproject function assigns background values of 
zero, binary image masks were created beforehand to differentiate zero background values and zero 
TCC values. These image masks were also reprojected to Albers WGS 84. 
(reproject_image_chips.py) 

Step 2: Snap to the NLCD National Grid 
To align the image chips to the NLCD national grid, the corner coordinates of the original, 
unreprojected images were transformed to the Albers WGS84 projection. The NLCD grid 
intersection points for the transformed corner coordinates were calculated. These intersection 
corner points were used to define the output geotransformation for the reprojected images from 
step 1. (reproject_image_chips.py) 

Step 3. Mask Buildings 
Since the LiDAR Pct1stRtns does not differentiate between structures and vegetation, it was 
essential to find a method and/or dataset to mask structures. We used the 
step_21_ndsm_building_1m, which is part of the analysis ready LiDAR dataset package, along with 
the Microsoft Building Footprint dataset (https://github.com/microsoft/USBuildingFootprints) to 
mask buildings. Neither of these datasets perfectly masked buildings but combining the two 
datasets compensated for most of the dataset’s errors of omission. 

We downloaded the Microsoft Building Footprint geojsons for all individual states. Using ArcGIS, we 
converted the geojsons to shapefiles and reprojected them to Albers WGS84. Using Python’s 
rasterio and geopandas  modules, we clipped the shapefiles to the image chips and converted 
them to 1-meter binary rasters that were projected to Albers WGS84 and aligned with the NLCD grid 
(2_clip_and_rasterize_mbf.py). 

The step_21_ndsm_building_1m dataset was reprojected to Albers WGS84 projection and snapped 
to the NLCD grid. These data were combined with the Microsoft Building Footprint data created 
above to create building masks. (create_lidar_and_mbf_building_masks.py) 

Step 4. Mask Water 
We created a CONUS water binary mask by merging the water and snow/ice categories for NLCD 
years 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 (https://www.mrlc.gov/data). 
These years were chosen because they were all the years available at the time of this project. The 
water mask was resampled from 30-meters to 10-meters to correspond to the spatial resolution of 
the LiDAR image chips. 

Step 5. Calculate Average TCC Values and Combine with Spectral Data 
Using the building masks created in Step 3, the water masks created in Step 4, and the background 
masks created in Step 1, we examined the eight neighboring pixels around each pixel in the LiDAR 
image chips for the presence of buildings, water, or background values. If any of these were 
detected, the pixel was flagged as unavailable for further processing. For the remaining available 
pixels in the LiDAR Ptc1stRtns images, we calculated the average TCC values for 3x3 windows 

https://code.fs.usda.gov/forest-service/TCC_NLCD_USFS/blob/main/lidar_investigation/LiDAR_Natl_Inventory/1_reproject_image_chips.py)
https://code.fs.usda.gov/forest-service/TCC_NLCD_USFS/blob/main/lidar_investigation/LiDAR_Natl_Inventory/1_reproject_image_chips.py)
https://github.com/microsoft/USBuildingFootprints
https://code.fs.usda.gov/forest-service/TCC_NLCD_USFS/blob/main/lidar_investigation/LiDAR_Natl_Inventory/2_clip_and_rasterize_mbf.py
https://code.fs.usda.gov/forest-service/TCC_NLCD_USFS/blob/main/lidar_investigation/LiDAR_Natl_Inventory/create_lidar_and_mbf_building_masks.py
https://www.mrlc.gov/data
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representing 30-m spatial resolution, from here on referred to simply as LiDAR response data. The 
corresponding 30-m spatial resolution predictor layers were extracted and this information along 
with the TCC values was exported to text files.  

The predictor layers were the same as those used in the most recent NLCD TCC product (Housman 
et al., 2023). Two additional types of predictor layers were tested. We added a seasonal component 
(spring, summer, fall) to the annual LandTrendr fitted composite predictors and we also included 
the annual LandTrendr fitted composite derivatives dataset. 

For FIA PI response data, values were extracted from year 2011 image predictors for training 
datasets. For LiDAR response data, the averaged year of the LiDAR collect was matched to the 
image predictors of the same year and compiled into a single training dataset. Temporal duplicate 
LiDAR observations in the same location were excluded since that would break the statistical 
assumption of independence. 

Step 6. Create Model Calibration and Validation Datasets 

The total number of pixel centers available for TCC modeling for each of the study area tiles were 
as follows: 2,235,753 for tile 7, 2,290,773 for tile 14, 5,787,911 for tile 19, 2,185,103 for tile 24, and 
4,358,275 for tile 38 (Figure 6).  The next step was to determine the optimal number of response 
data points to use for TCC modeling. To do this, we started with a random set of 9,489 points per 
tile. Since the area of each tile is 230,400 km2, this corresponds to 1 point per 24 km2 or 1 point per 
6,000 acres, similar to the “base” intensity of the FIA grid (Bechtold & Patterson, 2005).  We multiplied 

Figure 6.—LiDAR training data for tiles 7,14,19,24,38. NLCD TCC 2021 is the background image. 
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9,489 by five increasing in increments of five until reaching forty, a process we refer to as point 
intensification.  

We used these random sets of points for training and the remainer for model validation.  Using the 
random forest algorithm in R (Breiman, 2001; R Core Team, 2024), we obtained out-of-bag model 
performance metrics and calculated root mean square deviation (RMSD) statistics from the model 
validation datasets. Figures 7 through 9 show the out-of-bag percent variance explained (PVE), the 
out-of-bag RMSD, and the model validation RMSD. The graphs show there is a decline in the slopes 
around an intensification of 20, which is 189,781 points (9,489 x 20). This is the number of response 
data points used for the training datasets. The remaining points were used for model validation.  

We developed eight training datasets.  Four of the training datasets used a random selection of 
189,781 points from the datasets and only differed in the predictor datasets. One dataset used the 
same predictors as used in the previous NLCD TCC production effort (Housman et al., 2023). 
Another dataset used seasonal (spring, summer, fall) LandTrendr fitted composites as predictors. 
The remaining two predictor datasets added annual LandTrendr fitted composite derivatives to the 
previous two datasets. All datasets included eight topographic variables: slope, elevation, aspect, 
sine transformation of aspect, cosine transformation of aspect, component of slope in the x 
direction, component of slope in the y direction, and magnitude of slope. 

The other four models used the same predictor datasets as described above but used the FIA 
photo-interpreted plots collected using NAIP 2009-2011 as the response variable instead of LiDAR. 

  

Figure 7.—Random forest out-of-bag percent variance explained (PVE) for models created with different number of 
response data points. The vertical line depicts the number of response data points ultimately selected for this project. 
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Figure 8.—Random forest out-of-bag RMSD for models created with different number of response data points. The 
vertical line depicts the number of response data points ultimately selected for this project. 

Figure 9. —RMSD calculated using the model validation datasets for models created with different number of 
response data points. The vertical line depicts the number of response data points ultimately selected for this project.  
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Step 7. Develop and Apply Random Forest Models 
We applied Variable Selection in Random Forest (VSURF) in R to six of the datasets (Genuer et al., 
2013; R Core Team, 2024).  VSURF was not used for the datasets with annual LandTrendr fitted 
composites, as they only contained 22 variables. The other datasets had 50 or 106 variables. The 
variables selected by VSURF for the six modeling datasets and for each tile are shown in Table 1.  

We used the random forest model from the CUDA (Compute Unified Device Architecture) machine 
learning library (cuML) (https://docs.rapids.ai/api/cuml/stable/). We developed TCC and standard 
error images for each of the eight modeling scenarios for each of the five study areas.  

 
  

https://docs.rapids.ai/api/cuml/stable/
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Table 1.—VSURF variables chosen for the five tiles and six models.  The order of the variables is the VSURF order of 
importance. A variable with LT in the name is a derivative variable. The names following annual, spring, summer, or fall is a 
Landsat band name, Landsat derivative name, or TasselCap name. The remaining variables are topographic variables. 

Tile 07 
              

LiDAR - Seasoanl 

LandTrendr 

LiDAR - 
Seasoanl 
LandTrendr 

& Derivatives 

LiDAR - Annual 
LandTrendr & 

Derivatives   

FIA PI - 
Seasonal 

LandTrendr 

FIA PI - Seasoanl 
LandTrendr & 

Derivatives 

FIA PI - Annual 
LandTrendr & 

Derivatives 

fall wetness fall wetness annual ndvi   fall swir1 fall swir1 annual green 

fall swir1 fall swir1 

gradient magnitude 

of slope   

fall 

brightness fall brightness annual brightness 

summer swir1 fall swir2 slope   fall green fall green annual swir1 

fall swir2 summer swir1 elevation   fall blue fall blue annual blue 

summer red summer red annual tcanglebg   fall wetness fall red annual wetness 

spring brightness fall nbr red LT diff   elevation fall wetness elevation 

fall nbr 

summer 

wetness annual red   fall swir2 elevation annual swir2 

fall ndvi fall ndvi red LT mag   fall tcanglebg fall swir2 annual ndvi 

fall ndmi fall ndmi swir1 LT mag   

summer 

green summer green annual ndmi 

summer wetness fall red brightness LT mag   summer blue fall tcanglebg annual nbr 

fall red 
spring 
brightness swir2 LT mag   

spring 
wetness summer blue 

gradient magnitude 
of slope 

summer green 
summer 
green ndvi LT diff   spring swir1 summer swir1 annual nir 

spring swir1 fall brightness annual nbr   spring ndsi spring swir1 
x component of 
slope 

spring swir2 
summer 
brightness ndvi LT mag   

summer 
wetness spring ndsi wetness LT dur 

fall brightness spring swir1 ndsi LT mag   slope slope   

summer ndvi summer ndvi nir LT mag   

summer 

ndmi     

elevation elevation wetness LT mag         

summer ndmi slope blue LT mag         

spring wetness summer blue ndsi LT dur         

slope fall nir siwr2 LT diff         

spring ndmi summer ndsi ndvi LT slope         
aspect - cosine 

tranformed spring ndsi wetness LT dur         

  

y component 

of slope swir1 LT dur         

  swir LT diff green LT mag         
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Tile 14 
              

LiDAR - Seasoanl 
LandTrendr 

LiDAR - 
Seasoanl 

LandTrendr 
& Derivatives 

LiDAR - Annual 

LandTrendr & 
Derivatives   

FIA PI - 

Seasonal 
LandTrendr 

FIA PI - Seasoanl 

LandTrendr & 
Derivatives 

FIA PI - Annual 

LandTrendr & 
Derivatives 

spring red spring ndvi annual green   elevation spring blue annual blue 

spring ndvi spring red annual blue   fall ndvi spring swir2 annual green 

fall ndvi fall ndvi annual brightness   spring blue summer green elevation 

spring blue spring blue annual red   fall tcanglebg summer brightness annual ndvi 

summer brightness summer red annual ndvi   
summer 
green fall swir1 annual red 

summer red 
summer 
brightness annual swir1   fall swir1 fall ndvi annual swir2 

spring green elevation annual tcanglebg   spring swir2 fall tcanglebg annual swir1 

elevation 
spring 
tcanglebg elevation     elevation slope 

spring tcanglebg fall tcanglebg annual swir2       greenness LT diff 

fall tcanglebg 

spring 

brightness annual wetness       tcAngleBG LT mag 

spring brightness fall swir1 

gradient magnitude 

of slope       ndmi LT mag 

fall swir1 

summer 

green annual nir       ndvi LT mag 

summer blue summer blue greenness LT diff       ndvi LT diff 

summer green spring nbr nbr LT diff          

fall swir2 summer ndvi nbr LT mag          

fall greenness 
summer 
tcanglebg nir LT mag          

summer swir1 

gradient 
magnitude of 

slope red LT mag          

summer ndvi slope green LT diff          

spring swir1 summer nbr ndvi LT mag          

summer swir2 nbr LT diff ndsi LT mag          

summer tcanglebg   aspect         

summer nbr            
gradient magnitude 

of slope            

summer ndmi            

slope            

summer ndsi            

fall nir            
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Tile 19 
              

LiDAR - Seasoanl 
LandTrendr 

LiDAR - 
Seasoanl 

LandTrendr 
& Derivatives 

LiDAR - Annual 

LandTrendr & 
Derivatives   

FIA PI - 

Seasonal 
LandTrendr 

FIA PI - Seasoanl 

LandTrendr & 
Derivatives 

FIA PI - Annual 

LandTrendr & 
Derivatives 

spring swir1 summer swir2 nbr LT mag   
summer 
green summer green annual green 

summer swir2 spring swir1 annual swir1   summer red summer red annual red 

summer swir1 summer swir1 annual swir2   
summer 
swir2 summer swir2 annual swir2 

summer wetness 
summer 
wetness annual wetness   summer nbr summer nbr annual tcanglebg 

summer green 

summer 

green greenness LT mag   summer ndvi summer ndvi annual wetness 

spring brightness 

spring 

brightness elevation   

summer 

wetness summer wetness annual ndvi 

fall green summer red wetness LT mag   

summer 

swir1 fall green annual swir1 

fall swir1 fall green swir2 LT mag   fall green summer tcanglebg annual ndsi 

summer red fall swir1 nir LT mag   
summer 
tcanglebg spring brightness 

gradient magnitude 
of slope 

fall brightness fall brightness 
gradient magnitude 
of slope   

summer 
ndmi summer ndsi swir2 LT mag 

spring wetness fall ndmi nbr LT diff   
summer 
greenness spring red ndmi LT diff 

fall ndmi 
spring 
wetness ndvi LT slope     spring nir   

summer nbr fall ndvi annual green     spring ndvi   

elevation summer nbr annual red     
gradient magnitude 
of slope   

fall ndvi fall red wetness LT diff     ndmi LT diff yesl7   

fall red elevation red LT mag         

spring ndsi 

summer 

brightness siwr2 LT diff         

summer ndsi slope annual blue         
gradient magnitude 

of slope spring ndsi swir LT diff         

  

summer 

tcanglebg ndsi LT mag         

  spring nir annual greenness         

  
wetness LT 
slope ndsi LT diff         

  
ndmi LT 
slope swir1 LT dur         

  spring blue wetness LT slope         

  ndsi LT diff green LT diff         

  ndmi LT mag red LT slope         

  swir2 LT mag brightness LT diff         

    swir2 LT dur         

    ndmi LT slope         
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Tile 24 
              

LiDAR - Seasoanl 
LandTrendr 

LiDAR - 
Seasoanl 

LandTrendr 
& Derivatives 

LiDAR - Annual 

LandTrendr & 
Derivatives   

FIA PI - 

Seasonal 
LandTrendr 

FIA PI - Seasoanl 

LandTrendr & 
Derivatives 

FIA PI - Annual 

LandTrendr & 
Derivatives 

summer green 
summer 
green annual green   fall ndvi fall ndvi annual ndvi 

summer swir1 summer swir1 annual blue   
summer 
tcanglebg summer tcanglebg annual tcanglebg 

fall tcanglebg fall ndvi annual brightness   summer ndvi summer ndvi slope 

fall ndvi fall tcanglebg slope   elevation elevation annual green 

summer red summer red annual ndvi   
summer 
green summer green annual brightness 

summer brightness 

summer 

brightness elevation   slope fall tcanglebg elevation 

fall greenness fall greenness annual tcanglebg   fall tcanglebg slope annual blue 

summer swir2 summer swir2 annual swir1   fall greenness fall greenness annual swir1 

summer wetness slope annual swir2   

gradient 

magnitude of 
slope 

gradient magnitude 
of slope annual ndmi 

slope 
summer 
wetness annual wetness   

summer 
swir1 summer swir1 swir LT diff 

summer ndvi summer blue annual nbr   

fall 

brightness fall brightness   

elevation summer ndvi red LT diff   

summer 

ndmi summer ndmi   

fall swir2 elevation red LT mag   fall green fall green   

fall brightness fall swir2 ndsi LT mag   fall red fall nir   

summer tcanglebg 

summer 

tcanglebg swir2 LT mag   fall swir2 fall swir2   

spring swir1 summer ndmi annual ndsi   

spring 

greenness     

spring tcanglebg fall brightness ndsi LT diff   fall wetness     

fall swir1 fall swir1 nir LT mag         

summer ndmi 
spring 
tcanglebg wetness LT dur         

spring greenness spring swir1 wetness LT mag         

spring brightness 
spring 
greenness ndmi LT mag         

spring nir 
spring 
brightness ndmi LT diff         

fall ndsi spring nir          

x component of slope fall ndsi          

  
greenness LT 
diff          

  nir LT mag          

  

x component 

of slope          

  

aspect - sine 

tranformed           
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Tile 38 
              

LiDAR - Seasoanl 
LandTrendr 

LiDAR - 
Seasoanl 

LandTrendr 
& Derivatives 

LiDAR - Annual 

LandTrendr & 
Derivatives   

FIA PI - 

Seasonal 
LandTrendr 

FIA PI - Seasoanl 

LandTrendr & 
Derivatives 

FIA PI - Annual 

LandTrendr & 
Derivatives 

summer red summer red nbr LT mag   summer red summer red annual red 

summer green 
summer 
green annual red   

summer 
green summer green annual green 

summer swir2 summer swir2 annual green   
summer 
swir2 summer swir2 annual ndvi 

fall swir1 fall swir1 swir2 LT mag   summer ndvi summer ndvi annual nbr 

summer swir1 
summer 
wetness annual blue   summer nbr summer nbr annual swir2 

summer wetness summer swir1 greenness LT mag   spring ndvi spring ndvi annual tcanglebg 

spring red spring red siwr2 LT diff   fall green summer tcanglebg annual brightness 

spring ndvi spring ndvi nir LT mag   

spring 

brightness fall green annual swir1 

spring swir2 spring swir2 nbr LT diff   

summer 

wetness summer wetness annual nir 

fall wetness fall wetness annual brightness   summer blue summer blue wetness LT mag 

spring swir1 spring swir1 wetness LT mag   

spring 

greenness spring brightness greenness LT mag 

spring brightness spring green wetness LT diff   fall swir1 fall swir1 tcAngleBG LT mag 

spring green 
spring 
brightness ndmi LT mag     fall swir2 slope 

fall ndsi fall green nbr LT slope     spring green   

fall brightness summer ndmi ndvi LT mag     summer swir1   

summer ndmi fall brightness elevation     wetness LT mag   

summer nbr summer nbr swir2 LT dur     fall greenness   

spring nbr fall ndmi red LT mag     ndmi LT mag   

fall greenness 
spring 
greenness annual swir1     swir1 LT mag   

spring ndsi nir LT mag ndvi LT slope         

slope fall greenness swir2 LT slope         

gradient magnitude 
of slope ndmi LT mag 

gradient magnitude 
of slope         

elevation nbr LT mag red LT slope         

  

gradient 
magnitude of 

slope ndsi LT diff         

  nbr LT diff red LT dur         

    nbr LT dur         

    wetness LT dur         
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Results and Discussion 
Table 2 shows the model performance metrics (PVE and RMSD) and RMSD from the independent 
model validations. The models using LiDAR response data and annual Landtrendr composites and 
derivatives generally performed better than the same models but without the derivatives. For 
example, for tile 19, the OOB PVE, OOB RMSD, and holdout RMSD for the LiDAR – Annual 
Landtrendr & Derivates model was 52.2, 21.9, and 20.2, respectively, and 29.5, 26.6, and 22.9, 

Tile      OOB PVE  OOB RMSD Holdout RMSD 

Tile 07 LiDAR - Seasonal LandTrendr   80. 6  10.3  9.4 
 LiDAR - Seasonal LandTrendr & Derivatives 80.5  10.4  9.5 
 LiDAR - Annual LandTrendr   32.3  19.3  14.3 
 LiDAR - Annual LandTrendr & Derivatives  53.6  16  12.8 
 FIA PI - Seasonal LandTrendr   63  16.9  15.3 
 FIA PI - Seasonal LandTrendr & Derivatives NA  NA  NA 
 FIA PI - Annual LandTrendr   58.4  17.9  15.3 
 FIA PI - Annual LandTrendr & Derivatives  60  18  15.4 
     
Tile 14 LiDAR - Seasonal LandTrendr   84.7  8.4  7.7 
 LiDAR - Seasonal LandTrendr & Derivatives 84.7  8.4  7.6 
 LiDAR - Annual LandTrendr   76.2  10.4  8.8 
 LiDAR - Annual LandTrendr & Derivatives  78.6  9.9  8.4 
 FIA PI - Seasonal LandTrendr   66.8  8.1  6.7 
 FIA PI - Seasonal LandTrendr & Derivatives NA  NA  NA 
 FIA PI - Annual LandTrendr   60.7  8.8  7.6 
 FIA PI - Annual LandTrendr & Derivatives  62.2  8.7  7.4 
     
Tile 19 LiDAR - Seasonal LandTrendr   72.1  16.7  16.8 
 LiDAR - Seasonal LandTrendr & Derivatives 73  16.5  16.6 
 LiDAR - Annual LandTrendr   29.5  26.6  22.9 
 LiDAR - Annual LandTrendr & Derivatives  52.2  21.9  20.2 
 FIA PI - Seasonal LandTrendr   90.3  12.1  12.0 
 FIA PI - Seasonal LandTrendr & Derivatives 90.5  12  11.7 
 FIA PI - Annual LandTrendr   90.1  12.2  11.6 
 FIA PI - Annual LandTrendr & Derivatives  90.1  12.1  11.8 
     
Tile 24 LiDAR - Seasonal LandTrendr   81.7  9.5  9 
 LiDAR - Seasonal LandTrendr & Derivatives 81.8  9.4  9 
 LiDAR - Annual LandTrendr   58.9  14.2  10.9 
 LiDAR - Annual LandTrendr & Derivatives  62.5  13.5  11.1 
 FIA PI - Seasonal LandTrendr   69.2  11.1  9.9 
 FIA PI - Seasonal LandTrendr & Derivatives 69.3  11.1  9.9 
 FIA PI - Annual LandTrendr   63.6  12.1  10.6 

 FIA PI - Annual LandTrendr & Derivatives  63.7  12.1  10.6 

     

Tile 38 LiDAR - Seasonal LandTrendr   78.1  14  15.6 
 LiDAR - Seasonal LandTrendr & Derivatives 77.7  14.2  15.7 
 LiDAR - Annual LandTrendr   36  24  20.4 
 LiDAR - Annual LandTrendr & Derivatives  56.5  19.8  18.5 
 FIA PI - Seasonal LandTrendr   85.3  14.2  14.2 
 FIA PI - Seasonal LandTrendr & Derivatives 86  13.9  13.9 
 FIA PI - Annual LandTrendr   83.4  15.1  14.9 
 FIA PI - Annual LandTrendr & Derivatives  83.8  14.9  14.4 

 

Table 2.—Out-of-bag percent variance explained (OOB PVE), out-of-bag RMSD (OOB RMSD), and the RMSD from the 
model validation (Holdout RMSD) for the different models and study area tiles. 
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respectively, for the same model but without the derivates (LiDAR – Annual LandTrendr). For all the 
other tiles and models, there were minimal difference between models with and without derivatives 
for both the LiDAR and FIA PI trained models. VSURF did not select any derivative variables for tile 7 
and tile 14 for the FIA PI models using seasonal and derivative predictors. The models using annual 
LandTrendr fitted composites with LiDAR response variables performed worse compared to those 
using seasonal LandTrendr fitted composites. The OOB PVE for the models using annual 
Landtrendr fitted composites was < 77 and, except for tile 14, had considerably lower OOB PVE as 
compared to the other models.  For tiles 19 and 38, the FIA PI version with seasonal LandTrendr 
fitted composites outperformed the LiDAR version. However, for the other tiles, the LiDAR version 
with seasonal LandTrendr fitted composites performed better than the FIA PI version. The models 
using FIA PI as response variables and Seasonal Landtrendr for predictors outperformed the 
models using Annual Landtrendr.  

Figure 10 shows the predicted TCC versus the model validation observed LiDAR TCC for the eight 
model versions for the five tiles. As noted in Table 2, the results from the models using derivative 
predictors are very similar to those without. For tiles 19 and 38, the predicted TCC values above 60 
percent from models using FIA PI response data were higher than those from the models using 
LiDAR response data. This is caused by the presence of leaf-off TCC in the LiDAR data. 

 

Figure 10.— Predicted vs Observed TCC for the eight models for the five study area tiles. 

Figure 11 shows predicted TCC against the standard errors which were calculated from the 500 
random forest decision trees for each prediction. As has been observed, the difference between 
predictions and standard errors for models with and without LandTrendr derivatives is minimal. 
Predictions developed from models using LiDAR response data and annual predictors had high 
standard errors as compared to predictions from all the other models.  For tiles 7, 14, 24, and 38 
predictions developed using LiDAR response data with seasonal predictors tended to have lower 
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standard errors compared to predictions from the other models. For tile 19, the predictions 
developed from the model using LiDAR response data and seasonal predictors had higher standard 
errors for predictions in the 10 to 50 percent range as compared to predictions developed from 
models using FIA PI response data. For the other ranges, the standard errors were more similar for 
the FIA PI and LiDAR versions, though the predictions developed using LiDAR response data 
generally had slightly lower standard errors than predictions developed using FIA PI response data. 
For all tiles, predictions developed from models using FIA PI response data and seasonal 
Landtrendr predictors had lower standard errors than those developed with annual LandTrendr 
predictors. 

 

Figure 11.—Predicted TCC vs standard errors for the eight models for the five study area tiles. 

Figures 12 and 13 are plot densities of image values for TCC and standard errors, respectively. 
These figures focus on the models using LiDAR and FIA PI response data and with seasonal 
predictors and annual predictors.  For comparison purposes, the TCC and standard error values 
from the v2021.4 dataset are displayed. The datasets for the LandTrendr derivatives were excluded 
from these figures since the previous analysis demonstrated that LandTrendr derivatives did not 
affect model outputs. The TCC distributions for tiles 7, 14, and 24 are similar in form. The TCC 
distributions for tiles 19 and 38 are different because of the leaf-off TCC values in the LiDAR 
response data. For tile 19 and 38, the TCC distribution of predictions from the models using the 
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LiDAR response data peak in the 50 – 70 percent TCC range, while those from the models using the 
FIA PI response data peak in the 80 – 100 percent TCC range.  

 

The standard error distributions are different for every tile (Figure 13). For tile 7, the standard error 
distribution for the LiDAR response data and seasonal LandTrendr predictors had the most values 

Figure 12.—Density plots for TCC predictions. Response data used were either LiDAR or FIA PI. The predictors were 
either annual or seasonal spectral imagery along with topographic datasets. 

Figure 13.—Density plots for standard errors of the TCC predictions. Response data used were either LiDAR or FIA PI. 
The predictors were either annual or seasonal spectral imagery along with topographic datasets. 
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in the lower ranges while the other distributions had the most values in the middle ranges. The 
standard error distribution for the v2021.4 product for tile 7 was consistent across the range. For 
tiles 14 and 24, the v2021.4 product had more standard errors in the high range than all the other 
standard error distributions. For tiles 19 and 38, the standard error distributions for the LiDAR 
response data had higher standard errors than for the FIA PI response data. For tile 38, the standard 
error distribution for the v2021.4 product resembles the standard error distribution for the LiDAR 
response data and annual LandTrendr predictors.  

These figures illustrate the impact of using LiDAR leaf-off data acquisitions on mapping TCC. TCC 
predictions for tiles 19 and 38, dominated by hardwood forests, exceeded 80 percent for both FIA PI 
response data models but peaked in the 60 to 70 percent range for LiDAR response models, with 
very few values above 90 percent.  Tiles 7, 14, and 24, where coniferous tree species comprise the 
majority of forests, did not exhibit the issues shown in tiles 19 and 38.  The LiDAR response model 
for tiles 7, 14, and 24 showed more TCC predictions below two percent, suggesting that leaf-off 
LiDAR may be the cause for more low values as compared to the FIA PI response data models.  

Conclusion 
Historically, the FS TCC project has relied on FIA photo-interpreted plot data collected for the 
project circa 2011. The TCC workflow was overhauled for the 2021.4 release to allow for time 
invariant modeling, where a model built with one year of response and predictor data is applied to 
multiple years of  annual predictor data (Housman et al., 2023).  The rebuilt workflow and additional 
LiDAR testing also allow for time agnostic modeling (response and predictors from the same year, 
are mixed across years, in one model). These TCC workflow modifications plus the addition of a 
large analysis-ready LiDAR dataset, demonstrate that a viable alternative exists to the FIA TCC 
project FIA PI collect, and/or the time invariant modeling used in the last TCC production cycle 
(v2021.4).  However, challenges remain. There currently is no method to derive pixel-wise dates 
from LiDAR acquisitions in the public USGS and NOAA repositories, making it difficult to 
differentiate between leaf-on and leaf-off points. As seen in tiles 19 and 38, the absence of filtering 
for leaf-off conditions impacted TCC quality in areas with more hardwoods, which are more 
sensitive to leaf-off data.  Multiple TCC science projects are investigating possible solutions 
suitable for applications at the national project level.  Here we provide conclusive evidence that 
incorporating seasonal predictors with the LiDAR response data and FIA PI response data achieves 
higher-quality results compared to single growing season only image predictors, especially where 
leaf-off LiDAR is confounding models. 
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